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Abstract— This paper presents a non-traditional method and
algorithm to calculate the inverse solution for a one-dimensional
function without the diffeomorphism property. The proposed
method is called the Linear Reoriented Coordinates Method
(LRCM). The LRCM is a very powerful and useful too to
calculate the symbolic solutions for transcendental functions
where the inverse function is not possible to calculate using other
traditional methods and only analytic solutions can be calculated
but symbolic solutions are not possible to obtain. The description
and conditions for the application of the method are presented
in the paper. Three of the applications presented in the paper
will be to optimize the maximum rectangular area for a floorplan
for an 8-bit A/D converter given space constraints, to determine
the maximum power for a photovoltaic module (PVM) and for
a fuel cell. In both applications, it is not possible to calculate
the maximum values using only differential calculus. Finally,
examples and simulations for the LRCM are presented.

I. INTRODUCTION

For the last several centuries, the solution for transcen-
dental functions has been a challenge for physics, engineers
and mathematicians. A transcendental function is defined as
function which does not satisfy a polynomial equation, whose
coefficients are polynomials themselves, (i.e. F(z) = a,z™ +
wo Faqz+ ag, Vo, € R ). Some examples for transcendental
functions are exponential functions, logarithmic functions, and
trigonometric functions [1]. The most useful transcendental
functions for science are exponential functions. They have
an incredible number of applications, but it is not always
possible to solve them symbolically. Examples for modeling
with transcendental functions are in RLC circuits, fuel cells,
photovoltaic modules [2], maximum area for space optimiza-
tion given shape constraints [3], [4], [5], neural networks [6],
robotics [7], etc.

Unfortunately, the only way to solve them it is numerically,
sometimes with long and tedious iterations and the use of
computers with complex algorithms [7], [8], [9]. [10]. Now,
for any kind of function, the traditional and effective way to
calculate the maximum or minimum values is using differential
calculus. But in many cases in physical sciences, engineering
or math when it is required modeling using transcendental
functions are very complex to work with them.

If a function y = f(z) has the diffeomorphism property
then it is possible to obtain the maximum value yqz. It is
determined when the first derivative of f(z) is calculated with
respect to x, then the function f/(z) = 0 is solved with respect
to z to find the optimal z and v,,,,,,. Diffeomorphism is defined
as a map between manifolds which is differentiable and has

differentiable inverse. In other words, for a one-dimensional
system, it is a change of coordinates that does not change
information given by the original system [11]. A function
f(z) has the diffeomorphism property if it is smooth, it has
an inverse and the inverse is smooth. If a function has the
diffeomorphism property, then it is possible to find the inverse
for the given function. The inverse function is defined as
follows.

If f: X —Y is1—1 and onto then the correspondence
that goes backwards from Y to X is also a function and is
called f inverse, denoted f—'. This map is easily described
by f7':Y — X and f!(y) = = if and only if y = f(=).
This relationship is easy to remember for a real function since
switching coordinates of a point in the plane puts us at the
reflection of the original point about the line y = =. Thus
the graph of f~—' must be the reflection of the graph of f
about the line y = z. This is a great help if the graph of f is
already known. It’s the 1 —1 condition that is really critical for
constructing an inverse function. If f is 1 — 1 but not onto we
can simply replace the codomain with the range f(X) so that
f:X — f(X)inthen 1 — 1 and onto so we can talk about
an inverse f~! : f(X) — X. The domain of the function is
equal to the range of the inverse and the range of the function
is equal to the domain of the inverse. Finally, a unique inverse
only will exist in 1 — 1 functions or the unique inverse will
exists only over the restricted domain [1].

Unfortunately, it is not always possible to find the symbolic
inverse for a given function, z = f~!(y), [12]. But then
the question arises, is it at least possible to approximate the
inverse of one-dimensional function and how good it is this
approximation? To answer these questions, this paper proposes
a non-traditional method to approximate the symbolic inverse
for one-dimension transcendental functions. Also, the paper
provides the different conditions where the method can be
applied and which type of functions can be satisfied.

II. ROLLE’S AND LAGRANGE’S THEOREMS

The main idea for the LRCM (Fig. 1) is based in the
Rolle’s and Lagrange’s Theorems (Mean Value Theorem or
Fundamental Theorem Calculus) and it is valid in any domain
[@ b] but first we need to understand if it is possible to
approximate the inverse of a one-dimensional function. The
Lagrange Inversion Theorem (LIT) [1] determines the Taylor
series expansion of the inverse function of analytic function.
Consider the function, y = f(x), where if f is analytic at a



point zo and f/(xg) # 0. Then it is possible to invert or solve
the equation for y, z = f~'(y) = h(y) where h is analytic at
the point yo = f(zp). The reversion of series is given by the
series expansion of A(y) in (1).

S W (x—xo)’“>
My) == '
(y) OJF; %l dxh—T1 ((f(x) — )"

This equation will give the inverse function A(y), but
unfortunately it is required to do long calculations. Depending
the type of functions (or the use of computers), the result most
of the time will be an infinite series polynomial (Taylor series).
In the case of transcendental functions, it will be required to
take into consideration the restrictions on the domain making
it difficult to calculate the inverse.

But how can these problems be solved and how can
an approximate inverse function be found without the use of
Taylor series, long iterations and be a good approximation?
The Linear Reoriented Coordinates Method (LRCM) can be a
solution for these problems for at least a family of functions!

Theorem 3.1 (Rolle’s Theorem, Fig. 2). If f(z) is differ-
entiable on (a, b), continuous on [a, b] and f(a) = f(b),
then 3 c-value in (a, b) such that f/(¢) = 0.

Corollary 3.1 Modified Rolle’s Th.). If for f(z) 3! max-
imum value fp,q, then 3! 2(f'(z,p) = 0) in R X [0 zp00].

Theorem 3.2 (Lagrange’s Theorem, Fig. 3). If g is
continuous and differentiable on [a, b], then 3 c-value in
[a, ] such that, g'(c) = (g(b) — g(a))/(b— a).

Corollary 3.2. If f(z) = z - g(z) and f(z,p) = x,p -
g(xOP) = fmae then g/(xap) - _g(xop)/xOP'

Theorem 3.3 (Cauchy Mean Value Theorem). If g and f
are continuous and differentiable on [a, b], then c-value in
[a, b] such that, f'(c)/g'(c) = (f(b) — f(a))/(g(b) — g(a))).
The proofs for each theorem and corollary are well known and
are skipped in the paper.

T=XTQ

III. LINEAR REORIENTED COORDINATES METHOD
A. Description for the LRCM

The LRCM is a method to find the approximate maximum
value for a function f(x), where f'(z) = r(z) = 0, which
cannot be solved using traditional methods of differential
calculus, [13]. The LRCM can also be seen as a method to find
the approximate symbolic solution z for the equation r(z) = 0
without symbolic solutions. The function f(x) is defined as
f(z) =z g(x) and the maximum value of f(x) is defined as
fmaz Where frae = Zop - g(xop) and z,, is the optimal value
for fi,q.. The main idea for the LRCM is to find the optimal
points to calculate fi,q.. These points are (z.,, g(zop)) and
are calculated using ¢'(x) and the linear slope ml of g(z)
evaluated at the point z,p.

B. Conditions for the LRCM

The necessary conditions for the application of the LRCM
to calculate the maximum value f,,,, and the approximate
optimal z, ., for a function f(z), are:

) flz)=2z g(z)in RX[0 Zpa
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2) FECRX[0 Zimax])

3) g€ CIR %[0 Zimaz)

4 ¢(x)<0in R x [0 4]

35 ¢’(z) <OIin R X [0 Zpaa

6) Corollary 1 is satisfied in {z € £ x [0 Zpqq]}
7) g/(xap) - _g(xap)/xop

8) fmaz = Zop 'g(xop)

C. Approximation for xop and frax

Now, consider a function, f(z), that satisfies the conditions
for the LRCM hence it is desire to approximate x,,. The first
step is to use the straight line given by (2) where ¢l(x) is
always positive in {z € ® | [0 2,4.]}. The derivative
of gl(x) with respect to = is always negative and unique in
{ze€R | [0 zpmaa]} The derivatives of gi(x) and g(z) can
be intersected in the point x,, where it is the optimal point
Zop plus an error, ¢, as given in (3). For an small ¢, the optimal
value for z,, is approximated by (4), if ¢ is O then (4) is the
solution for x,,.

gl(z) = bl +ml-z = g(0) — xg(O) -z 2

0
gl'(z) =ml = _xg( ) = gl/(xap) = gl/(xap +e) 3
Top R Top T € = 9/71 <—;g(0)> C))]

The approximation of z., is substituted in f(z) to
approximate f,.., as given in (5). Finally, the error for the
approximation of f,,,, is given by (6).

f(xap) = Zap 'g(xap) - fap ~ fmaz (5)
o f(xO ) - f(xa )
Error =100 - ]}(x—ap)p ©)

D. Validation for the LRCM

Consider f(z) = =z - g(x), and the derivative of f(x)
with respect to =, f'(z) = g(z) + = - ¢'(z) where g(z)
has the diffeomorphism property. Now using the Lagrange’s
Theorem and the Cauchy’s Mean Value Theorem to find the
optimal value ., that it will produce the maximum value
of f(z) = fomas = Top - 9(@0op) = f(2,p) in the domain
[0 Zmae] Rolle’s Thm.). Let’s apply the Cauchy’s Mean
Value Theorem to f(z) and g(x) where both functions have
the diffeomorphism property to solve for z,,.
f(r) - f(xmaz) _ f(?”)

P — B T — Tmazx
g\r) — 9 Tmax g\r
T — Lmax 7 — Tmazx
) Fae)

g(r) 9/(x0p)

Using the Corollary 2, if r = 0 then the approximation

f/(xap) =

O

_ g(xap) 9
g/(mop) erozo ( )
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for x,, 1s given by (10) and the approximation error is 0.

1 {—9(0
xap:g/ 1<x ( ))

Now, if f(z) does not have the diffeomorphism property
then z,, can not be solved (i.e. z,, = f'~1(0) is not possible
to solve). Now, consider the function g(z) to determine zp,
instead to use f(x) because f'(x) = g(z) + « - ¢’(x). There
is a linear slope (mL) with the same value as ¢'(x,,) to find
fmaz, mL = g'(x,p) (Lagrange’s Thm.). Using Lagrange’s
Theorem, there is a function g/(z) = ml-x+bl, where gl(0) =
g(o)a gl(xmaz) = g(mmaz) = 0 and gl/(xap) - g/(xap); as
given in (11) and (12).

(10)

mlL = g'(z) ~ gl'(x) = ;g ©) (11)
—g(0
ZEap ~ ZEOp s :Eap - g/il <xg—()> (12)

Now, the approximate x,, can be calculated using (12)!
Finally, an approximate f,, ., is calculated using ., fiq. ~
f(Zap) = Tap - g(x4p). The error of angle e for z,, and frrqx
will be calculated using (13),

(13)

If e =0, then finqs is found, ¢'(zop) = gl(zop), Tap =
zop and the inverse map of the derivative of f(z) is found.

e =tan ! (g9(Zap) + ZTap - g’ (Tap))

IV. ADDITIONAL EXAMPLES USING THE LRCM

Example 1: Consider the function f(z)in{z € R | [0 r]}
given by (14) with the diffeomorphism property to find the
maximum value f,,,, using differential calculus. The deriva-
tive of f(x) is given by (15) hence the operation points z,,
and f,,q, are given by (16).

fz)=A =z (r* —12)0'5
2

(14

flxy=A. (7"2 —12)0'5 —A-2?. (r —12)0'5 =0 (15

r A r?
(xap = ﬁ7 f(xap) = T = fmaz) (16)
Now let’s find the maximum value for the same function
f(z) using LRCM.
1) Calculate ¢'(«) using g(x) where g(r) is A - and ¢(0)

is 0.

g(z) = A (12 —2%)"° (17)
J@) =—A-z- (7 —22)"° (18)

2) Calculate gl(z) using (2) then calculate gl'(x)
gllz)=A-r— A z=gl'(z)=-A (19)

3) Calculate ., using the LRCM hence ¢'(z) =~ gl'(x)

T
Lap = Lop — E (20)



4) To approximate fraa, Zep is substituted in f(x).

A-r?

f(xap) = 9 = fmas

e2y)

5) Finally, = is the final angle error for the approximation
with £ = 0° i.e. 0% of error for the approximation of x,,. Both
results z,, and fq, can be solved and a symbolic solution
is obtained with angle error of 0° i.e. f'(x.p) =0.

Example 2: A basic principle in microeconomics is to
obtain the maximum profit and maximum revenues with the
minimum costs. Consider the function (22) that describes the
profit for the company X given the number of employees, n.
The variable m is the maximum number of employees to be
contracted that will not create a deficit to the company X, and
k is a factor that relates the rate of profit per employee. It
is desired to maximize the profits for a company only con-
tracting the number of employees necessary to maximize the
profit. Unfortunately, (22) does not have the diffeomorphism
property. Now, if (22) is divided by n, (23) is obtained and
has the diffeomorphism property that satisfies the conditions
to apply the LRCM. The derivative of (23) given by (24) and
the boundaries of (23) can be used to calculate the optimal
number of employees, n, to provide the maximum profit for
the company X. Using the LRCM, n, is calculated using (25).
Now consider Fig. 4 and the LRCM where m is 52 and % is
10.06784 then n, is 36 with a profit of 284, 600$.

n

Profit(n)=n-k—n-(k—-1)- (%)W (22)
te=k— (k-1 EV 23
rate = —(—)<m> (23)

Orate 1 —k k E\™
an  m .1n<k—1>.<k—1> @24)
ny — In(k — 1) + In[ln(k — 1) — In(k)] 25)

In(k — 1) — In(k)

Example 3. The next example is to determine the inverse
of a function f(«) without diffcomorphism. The main goal
is to determine the maximum rectangular area inside of the
function g(z). g(z) describes the shape constraint relation for
a floorplan for an 8-bit A/D converter and it is required to
maximize the rectangular area inside of ¢g(z). Floorplan design
is the first task in VLSI layout and perhaps the most important
one [5]. In practical designs, the dimensions of some modules
are restricted by physical designs and therefore can not be
varied continuously [4]. f(z)in{z € R | [0 25]} represents
the rectangular area occupied by a floorplan for an 8-bit A/D
comverter.
x-25-tan (25 — )

fa) = tan—1(25)

(26)

Using differential calculus, it can be calculated f’(x) and
simplified to be solved by = but it cannot be solve for =, as
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given in (27).
x
14 (25 —z)?2
Consider the LRCM using the following steps:
1) Calculate ¢'(x) using g(x), g(25) is 0 and g(0) is 25

~ 25-tan" (25— x)

tan (25 — z) =0 (27)

9(z) tan1(25) (28)
Lo —25
9@ = @) T wen 1) B2 P
2) Calculate gl(z) using (2) then calculate gl’(x)
gl(z) =25 —z = gl'(z) = -1 30)

3) Calculate the approximate value of ., using the LRCM
hence ¢'(z) ~ gl'(z)

25

]
tan—1(25)

Top R Lgp = 25 — (€29)]
4) To approximate fpaw, Zap iS substituted in f(z) hence

fmaz ~ f(xap)~

25 25
Smaz ——= -tan ! —— — 1
tan~+(25) tan~(25)

25
. (25 ~ Vtan—1(25) 1)

5) The percentage of error for the approximation of f,, 4, 1S
less than 2.3% and was calculated using (6). This final result
proved how good is the approximation for f,,,, considering
that there is not analytical solution for (27).

Finally, the dimensions for the maximum rectangular area
for a floorplan for an 8-bit A/D converter are for x-axis is

(32)



21.0845 units and for g(x)-axis is 21.5693 units.

Example 4. Consider Fig. 5 where it is shown the
characteristic curve for a Fuel Cell where voltage output (V)
versus the current density (A/cm?) relationship are given and
the area for the reactor is 1cm?. The voltage, V', and the power,
P, in terms of the current, I, are described by (33) and (34).
To obtain the maximum power, P, is required to solve the
derivative of the power with respect to the current equal to
7RT10.

V(I)=03+ 0?7 -cos ! <0i7 - 1) (33)
PI) = I.V(I)=
O.3~I+¥ T -cos? <0—17 —1> (34)
or(I) i
T = O 3 + 7 COS <O_7 — 1)
7 7 9705
~ [1 - (ﬁ —1> 1 (35)

Unfortunately, it is not possible to solve (35) with respect
to I due the absence of the diffeomorphism property. The
LRCM can provide a good approximation for P, ;.

V() 1 I 2] 7%
“ar 7'[“(@‘1” 6
vin=1-L 0 _ 1 37

2 al 2
After use (36) and (37), it is possible to solve for the
approximate optimal current (I,,) given by (38).

Iy =07+07 4/1— iz (38)
T

Finally, I,, can be substituted in the voltage and power
equations, (34) and (33). Table I shows the results of the
LRCM for the voltage, current and power. The row with the
approximation error values for each variable was calculated

using (6).

TABLE I
COMPARISON FOR LRCM RESULTS AND OPTIMAL VALUES

Voltage Current Power
Optimal 04902 V' 1.1602 A 0.5687 W
Approx. 04538 V' 1.2398 A 05626 W
Error 744 % 6.88 % 1.07 %

Example 5: Consider the function g(z) described by (39).
It is desire to calculate the maximum rectangular area inside
of g(x) Vzin {x € R | [0 4]}. The rectangular area inside
of g(z) can be calculated using f(z) = = - g(«), the derivative
of f(x) with respect to z is given by (40). Unfortunately is
not possible to solve (40) equal to 0 but using the LRCM is
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possible to approximate the maximum rectangular area inside
of g(x).

9(2) = exp(8) — exp(4) + exp(z) — exp(2-7)  (39)
Fa) = exp(®) —exp(d) + (1+2) - exp(a)
—(14+2-z)- exp(2-z) (40)

1. Calculate the linear equation gl/(x) using the boundaries
of g(x) where g(0) is exp(4) + exp(8) and g(4) is O,

gl(z) = (exp(@) +exp(®) - (1-7) @D
2. Determine ¢'(z) and gl'(x)
g'(z) = exp(z) — 2 exp(2 - ) 42)
() = — - (exp(4) + exp(®)) @)
3. Substitute y = exp(z) on ¢'(x)
() =eap(zx) —=2-eap(2-2) =y —2-y° (44
4. Using ¢'(z) and gl’(x) solve for y
9 (zap) =~ gl'(zep) = (45)

y=2:5~ = (ep(8) +exp(d)

1 1
y=1+71" V142 exp(4) +2-exp(8) = 19.7309 (46)

5. Calculate x,, then approximate the maximum area using
xap:
= In(y) = In(19.7309) = 2.96411
= f(®ep) = @ap - 9(@ap) = 7,61851

Lap

C0)

Finally, f,... 1s 7,631.62 hence the percentage of error
for the approximation f(z,p) using (6) is 0.171524%. Again,



f'(z) = 0 is not possible to solve with respect to z due the
absence of the diffeomorphism property in f(z) but using the
LRCM at least, it is possible to estimate the optimal value for
z with small percentage of error!

Example 6: The next example is to determine the maximum
power for a photovoltaic module given the I-V Characteristic
Curve. This example was previously presented by [13]. Con-
sider the function P(V') for the application of photovoltaic
modules given by (48) and (49). The photovoltaic module
model has all the conditions for the application of the LRCM.
P(V) is the power delivered by a solar cell and I(V) is
the delivered current by a given voltage V' given by the
photovoltaic module where {V € & | [0 20]}.

V-V .exp(0.5-V —10)

PV) 1 — exp(—10) %)
1 —exp(0.5-V —10)
A= 1 —exp(—10) )

The function P(V') does not have the diffeomorphism
property. The maximum power, P,,,;, is not possible to
be calculated using (50) but using the LRCM at least can
approximate P,q, i.e. Pay 15 13.884.

OP(V) 1—exp(0.5-v—10)—05-V .exp(0.5-V —10)

oV 1 — exp(—10)

(50)
1) Calculate I'(V'), using I(V)

oI(V) —0.5-V .exp(0.5-V —10) 51)

oV 1 —exp(—10)
2) Calculate [;(V') and I/(V') where I1(0) =1 and I(20) =

0

| |

h=1-os=l=—o (52)

3) Consider the condition for the LRCM, I'(V) = I](V)

I'V) =~ I[(V)= —exp(0.5-V —10) ~ —0.05

= VA 20+42-1n(0.05) = 153940  (53)

4) To approximate Pp,.4., V,p 1S substituted in (48) hence
Prrap =1(Vap) - Vop = 13.856W.

5) Finally, the error for the approximation of P,,,,, is less
than 0.2%.

The final result shows that the LRCM is a very good
method for the approximation of the maximum power, P, .
produced by a photovoltaic module considering that the error
for the approximation is less than 0.2%.

V. CONCLUSION

This paper presented a method called Linear Reoriented
Coordinates Method (LRCM). The LRCM is a nontraditional
method to be applied for functions without the diffeomorphism
property. With the use of the LRCM, solutions to obtain the
approximate maximum value f... for a function, f(z) =
z - g(z), will be obtained using g(z) and the linear equation,
gl(x). Another advantage is that the LRCM can be used to cal-
culate the symbolic inverse for the one dimensional map f'~!.
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The LRCM can provide analytical and symbolic solutions very
close to the Lagrange Inverse Theorem or differential calculus
methods without the use of Taylor series, continuous fractions
or other type of approximations. Additionally, the LRCM
can be integrated to other optimization methods. Finally, the
LRCM is more practical for simulations due to the symbolic
solutions. This method may be applied to other fields like
math, geology, civil engineering, economy and mechanical
engineering, etc.
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